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Using a normal and tangential co-ordinate approach, a perturbation theory is devel- 
oped for wind-forced linear and nonlinear Kelvin waves propagating along an irregular 
coastline. The theory is valid for coastline curvatures which are non-dimensionally 
small, the curvature being non-dimensionalized with respect to the reciprocal of the 
boundary-layer trapping scale, i.e. the reciprocal of the radius of deformation. Accord- 
ing to linear theory, the main effect of a coastline of small curvature is to cause a 
phase-speed change in the wave (from - c  to -c (1  -&c(s)), where K ( S )  is the non- 
dimensional curvature a distance s along the coast from the origin) and to make the 
offshore Ekman transport change more rapidly along the coast, the latter effect 
implying a more ‘wavelike’ ocean or lake response. Two discernible nonlinear effects 
were found to be an increase (decrease) in the linear-solution longshore gradients in 
regions of positive (negative) isopycnal displacement and a tendency for increased 
(decreased) isopyncal displacement a t  capes (bays). 

1. Introduction 
Recent investigations of the response of coastal waters to atmospheric forcing on 

time scales much greater than the reciprocal of the Coriolis parameter have shown that 
there is a strong connexion between the water motion and wind-forced long waves 
trapped near the coast (see, for example, Walin 1972a, b ;  Bennett 1973; Gill & Schu- 
mann 1974; Gill & Clarke 1974; Clarke 1977). These investigations effectively obtained 
results for a straight coast so it is of some interest to examine the wind-forced water 
motions when, more realistically, the coastline is irregular. Some aspects of this 
problem have been examined recently by Allen (1976), who ignored stratification 
effects and concentrated on the influence of large-scale, small amplitude longshore 
variations in the shelf topography for a straight coastline. To isolate possible effects of 
finite amplitude irregularities in the coastline, t,his paper presents linear and nonlinear 
theories for the simple case when the ocean is of constant depth. In  such a case the 
long waves propagating along the coast are Kelvin waves. 

Properties of unforced linear Kelvin waves propagating along a non-straight coast- 
line have been examined by Buchwald (1968), Packham & Williams (1968), Pinsent 
(1972), Miles (1972) and Mysak & Tang (1974) for all frequencies. For the subinertial 
frequencies of interest here, Buchwald found that Kelvin waves were unattenuated 
after passing around a right-angled corner, Packham & Williams proved this result for 
a corner of any angle and Miles extended the work of Packham & Williams by finding 
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the time delays which unforced Kelvin waves experience as they pass around the 
corner. Mysak & Tang adopted a different approach, statistically analysing t'he effect of 
coastline irregularities which have a scale small compared with the boundary-layer 
trapping scale. The mathematical techniques used in all these analyses are quite 
complicated and not suitable for the wind-forced irregular-coastline case. 

As will be seen, the forced case is conveniently examined by adopting a normal and 
tangential co-ordinate approach. Such a treatment allows not only wind-forced linear, 
but also wind-forced nonlinear Kelvin waves to be considered. The normal and 
tangential co-ordinate approach is quite powerful and could probably be usefully 
employed in the analysis of other physical situations in which motion is trapped near 
an irregular b0undary.t 

After formulating a linear, constant-depth, stratified ocean model in $2,  a normal 
and tangential co-ordinate approach is described in $ 3  and used to obtain a simple 
solution for the pressure. The solution is valid for small K ,  where K is the curvature of 
the coastline non-dimensionalized with respect to the reciprocal of the boundary- 
layer t,rapping scale, i.e. the reciprocal of the radius of deformation. In  $ 4  the effect of 
curvature on the phase speed of the wave and a description of how bends in the coast- 
line can cause the solution to be ' wavelike' are discussed. An analysis of the nonlinear 
solution derived in the appendix is given in $ 5  and then a summary and some con- 
cluding remarks are presented in § 6.  

2. Formulation of a linear model 
The linear equations of motion for a constant-depth, rotating, horizontally stratified 

ocean can be separated into equations involving horizontal variations only by separa- 
tion into vertical modes (Taylor 1936). Following Gill and Clarke (1974)) the equations 
for the ith mode take the form 

aui/at + f k  x ui = - Vpi + b, ./Po H m i x  = - Vpi + X i ,  

c;2api/at + v.  ui = 0. 

(2 . i )  

(2.2) 

In these equations ui, V ,  k, f, t ,  c:, bi, T, Hmix and pi refer respectively to the horizontal 
part of the velocity, the horizontal gradient operator, the unit vector pointing up- 
wards from the ocean surface, the Coriolis parameter, the time, a separation constant, 
a forcing coefficient, the wind stress, the depth of the surface mixed layer of the ocean 
and the pressure divided by po (a representative density of the fluid). For notational 
convenience, the subscript i will be ignored in the work which follows. The constant c, 
which has the dimensions of velocity, is the propagation speed of a linear Kelvin wave 
travelling along a straight coast. 

If lengths are non-dimensionalized with respect to the radius of deformation c/f, the 
horizontal velocity u with respect to c, t with respect to f-l, p with respect to c2 and X 
with respect to fc, (2.1) and (2.2) become 

u , + k x u  = - V p + X ,  (2.3) 

p , + v . u  = 0. (2.4) 

t As pointed out by a referee, tho normal and tangential co-ordinate approach adopted in this 
paper is novel but elements of it have been used previously (e.g. see Robinson & Niiler 1967). 
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The variables u, X, V, p and t now represent non-dimensional versions of the original 
variables. 

Application of the operator apt  - k x to (2.3) results in 

(a2/at2 + 1) u = - Vpt + k x Vp - k x X + Xt. (2.5) 

Elimination of u between this equation and (2.4) then gives the field equation 

at z [V2p- (&+l )p]  = k . V x X + V . X , ,  

which is subject to  the boundary conditions that p -+ 0 a t  large distances from the coast 
and that the velocity normal to  the irregular boundary is zero a t  the boundary. 

3. Method of solution 
One would expect that coastline irregularities which have a scale which is every- 

where small compared with the boundary-layer scale, the radius of deformation, would 
have little effect on the solution. Evidence supporting this view has been provided 
by Mysak & Tang (1974), who developed a linear, unforced, statistical perturbation 
theory for coastlines having such irregularities. They found that the correction to  the 
solution due to  the irregularities was negligible, being of order e2, where 

typical scale of coastline irregularities 
radius of deformation 

€ =  

Therefore, with little error, the model coastline can be defined as a ‘smooth’ boundary 
such that the real coastline departs from the smooth boundary only by perturbations 
which are small compared with the radius of deformation. 

Of all possible smooth coastlines, the aim here will be to  develop a method of solu- 
tion which is valid for smooth coastlines which are ‘slowly varying’ in the sense that 
the radius of curvature is always large compared with the radius of deformation. I n  
non-dimensional units, this condition is simply that the radius of curvature A is 
always large. It will be found that at zero order the solution is the same as for a straight 
coast. The purpose of the analysis to be presented is to  calculate to  order A-l the 
modification by the curvature. 

Consider normal and tangential co-ordinates ( n , s )  to the coastline (figure 1). n is 
defined as the non-dimensional distance seawards from the coast and s as t,he non- 
dimensional distance along the coast from the origin. Since n denotes non-dimensional 
distance from the coast, the equation of the coast is n = 0 and the equation of a vertical 
surface a distance of one radius of deformation from the coast is n = 1 .  According to 
this definition, some points in the fluid could be associated with more than one (n, s) 
pair; this is avoided by defining n at those points to be the smaller value (see figure 1). 

The curvature K ( S )  ( I K ~  = 1/A) is defined to be positive (negative) when the coastline 
is convex seawards (landwards). By analogy with cylindrical polar co-ordinates, it 
might be expected that the metrics d, and d, corresponding to the general orthogonal 
co-ordinates (n, s )  would be given by 

This result is in fact valid and can be checked using simple vector differential geometry 
(see Clarke 1976). 

d, = 1 ,  d ,  = 1 + M ( S ) .  

12-2 
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n =  I , n=O 

FIGURE 1. Co-ordinates normal and tangential to the coastline. The contours do not connect 
between the bay and the open sea in the bottom half of the figure because n is defined to be the 
shortest distance from the coast. 

In terms of normal and tangential co-ordinates, ( 2 . 6 )  can thus be written as 

Since the coastline has a longshore scale of order A and the wind generally has a scale 
a t  least as large as the typical values of A of interest, the longshore scale of the motion 
is of order A or larger. Therefore, provided 1 + n ~  is of order 1 or larger, ( 3 . 1 )  can be 
written as 

at = k . V x X + V . X , .  ( 3 4  

The restriction on 1 +nK means that the solution is valid everywhere except where 
the curvature of the coast is negative and n is approximately equal to  A.  Since the 
boundary-layer scale is the radius of deformation, all the motion of interest is in the 
region where the solution is valid. 

The right-hand side of ( 3 . 2 )  suggests that the motion is driven by the wind-stress curl 
or divergence, but this is not so: the motion is principally driven by the Ekman flux 
perpendicular to t'he coast [see ( 3 . 1 0 ) ] .  It can be verified a posteriori that the error 
introduced by neglecting the right-hand side of ( 3 . 2 )  is of order L-l, where L is the 
ratio of the wind stress to the radius of deformation. L is generally very large. T, the 
time scale non-dimensionalized with respect to f-l, is also large (only time scales 
much greater thanf-l will be considered), so when ( 3 . 2 )  is written as 

( 3 . 3 )  
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the right-hand side is very small compared with the left-hand side. For simplicity, the 
right-hand side will be taken to be < O ( K ~ ) .  If  the motion begins from a state of rest 
then (3 .3)  can be integrated with respect to time to give 

(3.4) 

Since it is required that p --f 0 as n --f co,t the solution of Ohis equation when the 
curvature is positive is 

(3.5) 
and for negative curvature is 

(3 .6)  
In these equations I. and KO are modified Bessel functions and $(s, t )  is an arbitrary 
function. When the curvature is small and the frequency squared is small compared 
with f2, this solution generalizes the circular-island solution of Longuet-Higgins ( 1969) 
and the circular-lake solution of Csanady (1972).  A circular island corresponds to the 
case when K is positive and constant, a circular lake to K constant and negative. 

The motion is trapped within roughly one radius of deformation of the coast so in 
this region of interest n is small compared with A .  Applying this approximation to 
(3.4) gives 

and so 

Both (3 .5)  and (3.6) reduce to (3 .8)  for n small compared with A .  
The remaining boundary condition to be satisfied is that the velocity component 

normal to  the coast is zero a t  the coast. The velocity component normal to the coast 
can be obtained by taking the scalar product of the unit normal to the coast with both 
sides of (2.5).  To within an error of order ~2 or smaller the boundary condition can be 

a2plan2 + K aplan - p  = 0 

p = #(s, t )  e-n( 1 - + n ~ )  + O ( K ~ ) .  

(3 -7 )  

(3.8) 

written as 
ap/as+azp/anat = C,.X,+C,.X on n = 0, (3.9) 

where the unit vectors 6,  and eS are in the direction of increasing n and s respectively. 
Using (3.8) and (3 .9)  gives the following equation for $: 

(3.10) 

A convenient way to solve (3.10) is to integrate along the characteristic defined by 

(3.11) dsldt = - 1 + i K .  

Along this characteristic (3.10) becomes 

d$h/dt = (en. x, + es. x) ( - 1 4- i K ) ,  (3.12) 

SO that (3.10) has been converted into a form which can readily be integrated. 

t There are coastlines for which n as defined cannot tend to infinity (see figure 1 ) .  Under the 
mild restriction that n can always increase to  a number greater than 1 ,  the condition p + 0 as 
n -P rn is a reasonable approximation. 
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4. Analysis of the solution 
0 ) ,  (3.8),  (3.11) and (3.12) reduce to  the Kelvin-wave 

equations discussed in Gill & Clarke (1974). When the coastline is not straight, 
the decay of the Kelvin wave with distance from the shore, the speed of the Kelvin 
wave and the wind forcing term are all changed. These changes are discussed 
below. 

When there is no wind the solution of (3.10) represents a free wave propagating at  a 
non-dimensional speed given by (3.11). In dimensional units the change in speed is 
from - c (straight coast) to ( - 1 + + K )  c ;  the Kelvin wave thus speeds up when travel- 
ling along a bay ( K  < 0) and slows down at capes ( K  > 0) .  This result agrees with the 
results of a ray-theory approach (Clarke, unpublished) and equation (1.5) of Miles 
(1972) (for the same angular change in coastline direction). 

As well as the phase-speed change, the decay of the Kelvin wave with distance from 
the coast is changed when the coast is curved. However, the extra linear variation 
with n is unimportant compared with the exponential decay and it can still be said 
that the solution has a coastal boundary-layer width scale equal to the radius of 
deformation. 

In  (3.12), since a/at < 1,  lQs.Xl B (Qn.X,( or both terms are insignificant. Thus, 
although the expression for the wind forcing term has changed, the physics expressed 
by (3.12) are the same as those expressed by the first-order wave equation in the 
straight-coast case: the rate of change of q’J for an observer moving with the wave is 
proportional to the longshore component of the wind and hence the Ekman transport 
perpendicular to the shore. This implies that the amplitude q’J at a given coastal 
position depends on how much it has been increased or decreased by Ekman trans- 
port as the Kelvin wave has propagated along the coast to the coastal position under 
consideration. 

Note particularly that, since the wave is generated by the wind, its amplitude need 
not be sinusoidal in shape and will in fact depend on the (s, t )  structure of Qs. X. When 
Q,.X is independent of t,he longshore co-ordinate s, then under the assumption of 
an initial state of rest the solution of (3.10) is independent of s and no waves can 
be observed. This last result implies that it should be more difficult to observe 
wind-generated long-wave propagation along a straight coast (where 6,. X is weakly 
dependent on s) than for (say) a large lake (where Qs.X is much more strongly 
dependent on s owing to bends in the ‘coast’). Observational evidence (e.g. from the 
Oregon coast and Lake Ontario) tends to support this view (see Clarke 1977). 

To summarize, according to linear theory, the main effect of a slowly varying 
coastline is to cause a change in the phase speed of the wave and to make the off- 
shore Ekman transport change more rapidly along the coast, the latter effect implying 
a more ‘wavelike’ ocean or lake response. 

For a straight coast ( K  

5. Nonlinear effects 
When the ocean, a sea or a large lake is influenced by the action of a strong wind 

blowing parallel to the shore, it  is usually the case that near the shore the pycnocline is 
displaced a vertical distance comparable to the pycnocline depth in the water at  rest, 
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Equilibrium level a HI of surface 

Density p r  

2 
FIGURE 2. A diagram illustrating the definition of H I ,  H2 and h.  

and this suggests that nonlinear effects could be important. The analysis of the wind- 
forced nonlinear motion of arbitrarily stratified water along an irregular coastal 
boundary is difficult. However, some aspects of the nonlinear motion can be analysed 
analytically if a normal and tangential co-ordinate approach is adopted and several 
simplifying assumptions are made. 

Consider a constant-depth ocean or lake with a smooth,? slowly varying (in the sense 
discussed earlier) coastline. Let the stratification be approximated by two layers of 
fluid of constant density, the surface layer being thin compared with the bottom 
layer (see figure 2 ) .  For such a model the nonlinear reduced-gravity equations apply 
for the single baroclinic mode. If it is assumed, as in the linear case, that the time scales 
to be considered are long compared with f -1 ,  that the wind has a scale a t  least as great 
as A2 and that the water is initially at  rest, then the potential-vorticity equation can be 
used to derive a perturbation solution for small K .  Details are given in the appendix. 
The solution can be written [see (A 8), (A 9) ,  and (A l l)]  as 

h = I e - n + K ( J e - ” + ~ 1 2 e - 2 n - & z I e - ” ) + O ( ~ 2 ) ,  (5.1) 

where h refers to the pycnocline displacement non-dimensionalized with respect to the 
depth HI of the upper layer. I and J are determined from the integration of [see (A lo), 
(A 12) and (A 13)] 

d l l d t  = c,.x (5 .2 )  

and 

along the characteristic 
ds/dt = - 1 +I. 

(5.3) 

(5.4) 

Bennett (1973) obtained this solution for a straight coast ( K  = 0);  in his analysis 
rectangular Cartesian axes x and y replaced the n and s axes and j, the constant unit 
vector in the y direction, replaced 6,. 

Discussion of the zeroth-order solution 
To discuss the nonlinear effects, consider first the zeroth-order solution. The physics 
expressed by ( 5 . 2 )  and (5.4) are essentially the same as those for the linear case except 

t As pointed out by a referee, in the linear case the real coastline can be ‘smoothed’ without 
introducing a serious error, but in the nonlinear case perturbations to a smooth coastline could 
well introduce an int,eresting nonlinear effect. Such an effect will not be investigated here. 
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that the phase speed of the wave now depends on its amplitude, decreasing as the 
pycnocline depth is decreased. When the pycnocline actually reaches the surface at  the 
coast,t the nonlinear Kelvin-wave phase speed is in theory zero. In practice, however, 
the mixing action of the wind causes the pycnocline to become diffuse as it nears the 
surface so one might in fact expect ‘noisy’ propagation a t  a reduced speed. 

It is interesting that, for a straight coastline and a spatially homogeneous wind, the 
linear and nonlinear solutions are the same : both are uniform along the coast and are 
given by 

( 5 . 5 )  

When Cs.X depends on s, however, (5.5) no longer applies and linear and nonlinear 
wave properties become important. Consider, for example, the simple case when 
C,. X is positive everywhere except for an isolated section of coast where it is zero. For 
convenience, label the positive sections OA and BC, the zero section AB and let the 
direction of Kelvin-wave propagation be CBAO. A simple characteristics analysis 
(details are given in Clarke 1976) shows that, from an initial state of rest, the pycnocline 
height increases not only in the regions OA and BC, where Cs. X is positive, but also, 
owing to Kelvin-wave propagation, in the zero region AB. Note however that, since the 
wave arriving at  A at any time t has had to traverse a section of coast BA where C,. X is 
zero, it is in general forced less than the one arriving at  B at time t and consequently 
there is a drop in pycnocline height from B to A.  This drop is greater for the nonlinear 
case because, when the pycnocline displacement is positive, nonlinear Kelvin waves 
have a smaller phase speed than the linear waves and consequently spend a longer time 
in the section BA of no forcing. If OA and BC are regions where C,.X is negative 
instead of positive the reverse results apply: downwelling (i.e. downward pycnocline 
displacement) develops along OA and BC and, owing to the greater nonlinear propa- 
gation speed, the change in pycnocline height from B to A is smaller in the nonlinear 
than the linear case. 

Discussion of the Jirst-order solution 

TheJirst-order solution [see (5.1)-(5.4) and (A 13)] is in general complicated. However, 
since KJ is altered only when K or K~ is non-zero for a large class of coastlines (e.g. those 
that have K = 0 along most of the coastline), IJl is small compared with 111. When this 
condition is satisfied, the pycnocline height close to the coast can be approximated by 
the simple equation 

(5.6) 

where I is determined from (5.2).  This result suggests that there is a tendency for 
isopycnal displacement to be increased in regions of positive curvature (‘ capes ’) and 
decreased in regions of negative curvature (‘bays ’). It is interesting to speculate 
whether this result is still qualitatively true for moderate or large curvature. The 
results of the nonlinear two-layer numerical model of Hurlburt (1974) suggest that for 
I K J  M 2 there is indeed a tendency for isopycnal displacement to be increased at  
‘capes’ and decreased a t  ‘bays ’, albeit that the increase and decrease are considerably 
less than those which would be obtained by putting K = k 2 in (5.6).  Although it is 

t It should be noted that the theory breaks down when the pycnocline reaches the surface 
and the wind remains in a direction which would normally lead to increased pycnocline height. 

h = l e - n  + Z~I2e--2n,  3 
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encouraging to see that the perturbation solution appears to model qualitatively a 
solution when K is of order 1, it should be mentioned that there is some doubt as to the 
validity of the numerical results where ~ K I  = 2 because the space scales of the solution 
near those sections of the coast are only a few times larger than the grid size. 

6. Summary and concluding remarks 
In  addition to demonstrating a way of analysing trapped motions along an irregular 

boundary, this paper has attempted to isolate and examine some aspects of the in- 
fluence of coastline irregularities on the distribution of upwelling and currents along 
a coastline. Using simple models, results were obtained for the wind-forced motion 
of stratified water of constant depth near a coastline which varies on a scale much 
larger than the radius of deformation. For the linear mode1 it was found that the 
solution can be described by a wind-forced Kelvin wave, the speed of which depends 
on the non-dimensional curvature K ( S )  of the coastline. The character of the water 
response is dependent on the coastline type. For long, straight or nearly straight 
coastlines the offshore Ekman transport is weakly dependent on the longshore co- 
ordinate s, and consequently, even though the wave mechanism operates, waves are 
not easily observed. For a bent coastline, however, the offshore Ekman transport 
is more strongly dependent on s and propagating waves can in fact be observed. A 
review of the observational evidence for such forced propagating waves (and a 
discussion of the effect of curvature on the propagating wave in Lake Ontario) has 
been given in Clarke (1977). 

In  the nonlinear case, the phase speed of the Kelvin wave depends on its amplitude, 
so longshore gradients of the nonlinear solution are greater in an upwelling region and 
less in a downwelling region than in the linear case. Another identifiable nonlinear 
effect (at least for coastlines of small curvature and the two-layer stratification con- 
sidered) is the tendency for upwelling to be increased a t  ‘capes’ ( K  > 0) and to be 
reduced a t  ‘bays’ ( K  < 0). There is some computational evidence to suggest that this 
effect may persist when K is of order 1 ,  but to the author’s knowledge no ocean or lake 
measurements have been made with which this effect could be adequately tested. 

In  conclusion, it should be stressed that other factors besides the coastline configur- 
ation can strongly influence the longshore variation of upwelling and currents. The 
most notable of these, longshore variations in bottom topography, has been discussed 
numerically by Peffley & O’Brien (1976) and observationally by Shaffer (1974) and 
Copenhagen ( 1953). The available evidence indicates that longshore topographic 
variations, usually in the form of canyons running a t  right angles to the coastl, can 
strongly influence the longshore upwelling distribution on scales of the order of the 
shelf width or radius of deformation. Such scales are generally significantly smaller 
than the coastline scales discussed in this paper, so it seems that, while coastline 
variations may have the stronger influence on scales large compared with the radius of 
deformation, on smaller scales longshore topographic effects may dominate. However, 
such a conclusion ignores the possibly important nonlinear small-scale influence of 
pronounced capes of large curvature. Further study is clearly necessary to resolve 
these and other questions, but such a study is beyond the scope of this paper. 
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Appendix. Nonlinear theory 

two-layer nonlinear model. Thus 
Under the assumptions discussed in $5, potential vorticity is conserved for the 

-- I) ( [ + I  ) = ( $ + U . V )  (E) = 0. 
Dt - h + l  - h + l  

Here h denotes the pycnocline displacement non-dimensionalized with respect to the 
depth HI of the upper layer, < denotes the vertical component of relative vorticity 
non-dimensionalized with respect to f, u denotes the upper-layer velocity non- 
dimensionalized with respect to cf and the other non-dimensional symbols have the 
same meaning as in $2. As in the linear case, the fluid starts from rest, so initially 
the potential vorticity (<+ I) / (  - h +  1 )  has the value 1 everywhere. Equation (A 1) 
indicates that if the potential vorticity initially has the value 1 then it must have this 
value €or all time. Hence the field equation for the motion is 

g + h  = 0. (A 2) 
To obtain the field equation in terms of h alone, < must be calculated in terms of h by 
taking the horizontal curl of the nonlinear analogue of (2.5). One has 

(A 3) 

(A 4) 

D DX 
( I  + O ( K ~ ) ) U  = - ( V h ) - k x V h - k x X + -  Dt Dt 

and 

By repeated substitution for u and use of the results 

gk = V x u = V x (u. V (Vh) )  - (V2h) k + O(K'). 

ac, ae, a ac, ,. 
an an as as 

- -Ken, _ -  _ - =  0, -6, = K e s ,  - - 

which follow from an appendix to Batchelor (1967), it  can be shown that, 

v x (u. V ( V h ) )  = - 2 ~ h ,  h,, k + O ( K ~ ) ,  (A 5 )  

where the subscript n denotes a/&. Equations (A 2), (A 4) and (A 5) together imply 
that the field equation is 

to order K .  

h,, + Kh, + 2Kh, h,, - h = 0 (A 6) 

This equation is to be solved subject to the condition that h 4 O  as n- tm and the 

7 The phase speed c of long internal waves in the linearized version of the reduced-gravity 
equations is (Stokes 1847) 

c = [- SAP -14 % (--) &HI + , 
Po (Hl+H2) 

where Ap is the density difference between the upper and lower layers, H, is the depth of the 
lower layer and g is the acceleration due to gravity. 
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condition that the velocity component normal to the coast is zero at the coast. From 
the O(1) balance in (3.10) and the result alas = O(K) ,  the coastal boundary condition 
can be written in terms of h as 

- h,, + h,, hh2, K + h,, h, - ~ h ,  h, - h, = 6,. X, + 6,. X + ~ h , ( 6 , .  X) - h,,(b,. X) + O ( K ~ )  

on n =  0. ( A 7 )  

The nonlinear problem defined by (A 6),  (A 7) and the boundary condition a t  
infinity can be solved for small K using a perturbation approach. Write 

The solution is h(0) = Ie-n, 

where I satisfies I , + I s ( - l + I ) =  &,.X. 

The first-order problem is 
h$:i - h(1) = I e-" + 212 e- tn,  

h(l)-+O as n+co 
and 

- ~hj:l+ ( ~ h j : ) ) ,  h$') + ~hj?)h$P,' - ( ~ h ' l ) ) ,  = 6,. X, +I,(&,. X) - ~ ( 6 , .  X) I + 1 2 1 , ~  - K I I ~  

The solution is 

where KJ satisfies 

and 

on n =  0. 

ht1) = J ( ~ , t ) e - j L +  $ [ 2 e - e , ~ -  L ) h I e - t ~ ,  

( K J ) ,  + ( K J ) ,  ( I  - 1 )  + ( K J )  I, = x, 
(A 1 1 )  2 

(A 12) 

s, = 6,&. x, +I, [ - 4 y K  - +K] + K ,  [ - 4I3+ 3/21 + K [  - 3121,- gI1,] 
+ I , ( 6 n . X ) - ~ I ( 6 8 . X ) .  (A 13) 

Note that equations (A 10) and (A 12)  for I and J can be simplified by integrating along 
the characteristic 

(see 9 5 ) .  
(A 14) ds/& = - 1 + I  
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